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Why Analyze Performance?

Improving performance on HPC systems has compelling economic and
scientific rationales.

— Dave Bailey: Value of improving performance of a single application, 5% of
machine’s cycles by 20% over 10 years: $1,500,000

— Scientific benefit probably much higher

Goal: solve problems faster; solve larger problems

Accurately state computational need

Only that which can be measured can be improved

The challenge is mapping the application to an increasingly more complex
system architecture

— or set of architectures ~
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Performance Analysis Issues

Difficult process for real codes
Many ways of measuring, reporting

Very broad space: Not just time on one size

— for fixed size problem (same memory per processor): Strong
Scaling

— scaled up problem (fixed execution time):
Weak Scaling

A variety of pitfalls abound

— Must compare parallel performance to best uniprocessor
algorithm, not just parallel program on 1 processor (unless it’s

best)
— Be careful relying on any single number

Amdahl’s Law



Performance Questions

How can we tell if a program is performing well?
Orisn’t?

If performance is not “good”, how can we
pinpoint why?

How can we identify the causes?

What can we do about it?
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Processor-DRAM Gap (latency)

 Memory hierarchies are getting deeper
— Processors get faster more quickly than memory
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Performance analysis tools

Use of profilers to measure performance
Approach

* Build and instrument code with binary to monitor function groups of interest
— MPI, OpenMP, PGAS, HWC, IO

* Run instrumented binary
* Identify performance bottlenecks
* Suggest (and possibly implement) improvements to optimize code
Tools used
— IPM: Low overhead, communication, flops, code regions
— CrayPAT: Communication, flops, code regions, PGAS, variety of tracing
options
Overhead depends on number of trace groups monitored

Level of detail in study depends on specifics: time available,
difficulties presented by code
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Performance checklist

Scaling

— Application time, speed (flop/s)

— Double concurrency, does speed double?
Communication (vs computation)

Load imbalance

— Check cabinet for mammoths and mosquitoes
Size and composition of communication

— Bandwidth bound?
— Latency bound?
— Collectives (large concurrency)

Memory bandwidth sensitivity



Tflops
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Communication not reason for
performance degradation

* Separate out communication

BOUT++ performance on hopper.nersc.gov
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W MPI pie shows signifi
NERSC Allreduce call-

MPI_Allreduce calls form bulk of
pie

MPI average message size 5 kB,
74,000 calls

Not quite entirely latency
bound on hopper (5 kB should
be large enough)

Might become bottleneck after
other issues are sorted out

(communication not yet a 65,536
bottleneck)

B MPI_Wait
B MPI_AIIReduce
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* Breakup by time spent: Calc scales somewhat,
but inv, solver do not scale
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Bout++ (elm) scaling summary

* Up to concurrency 8,192, code scales nearly
perfectly.

* Two issues beyond 8,192
— Performance decreases (flop/time decreases)
— Wall time increases

— MPI not the reason for performance degradation
— Computational performance decreases



Grid points/p#®
Decreases with

concurrency

%, U.S. DEPARTMENT OF

EN ERGY Science

(]
=

ny per core

Issues with increasi
count

BOUT++ strong scaling (hopper.nersc.gov)

10

- - Ideal
e—e Experiment

1 i i i 1 i i
1024 2048 4096 8192 16384 32768 65536
Number of cores

128

64+

32F

16

8,

4,

2+

BOUT++ strong scaling (hopper.nersc.gov)

: : : : : :

Number of cores

Increaseasing concurrency

Office of

14

* Steady increase in flop
count

(number of operations)

Conjecture: Extra
computations in ghost
cells (and more cycles
spent in doing these)

Valid region (excluding

ghost region) does same
amount of work
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BOUT++: Expt-LAPD-drift

Experiment: turbulence in an annulus (LAPD)

Investigate source of extra computations in code
[more work done — leads to greater flop’s (not
‘flop/s’) count]

Code annotated to give flop count with CrayPAT

A given portion is annotated and flop count in
that code section is compared across concurrency

Conjecture: increase in flops in this section
because of ghost cell computations (arrays
consist of valid+ghost regions)



PAT region begin (24,
"phys run-14");

nu = nu_hat * Nit /
(Tet”*1.5) ;
mu 1i = mui hat *

(T1t”*2.5) /Nit;
kapa Te = 3.2*(1./fmei) *
(wei/nueix) * (Tet”2.5) ;

kapa Ti = 3.9%* (wci/
nuiix)* (Tit*2.5);

// Calculate pressure
pei = (Tet+Tit)*Nit;
pe = Tet*Nit;

PAT region end(24) ;

Annotated code region

* Quantities Tet, Tit, Nit, etc declared as
follows

// 3D evolving fields
Field3D rho, ni, ajpar, te;

// Derived 3D variables
Field3D phi, Apar, Ve, jpar;

// Non-linear coefficients
Field3D nu, mu_i, kapa Te, kapa Ti;

// 3D total values
Field3D Nit, Tit, Tet, Vit, phit, VEt, ajp0;

// pressures
Field3D pei, pe;
Field2D peiO, peO;

v
Variables definedto  Extra
comprise valid region Computation
+ghost cells in boxcan be
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Y- [Je8 Computation in gu

e Grid: 204x128, ghost cells: MXG, MYG=2

6400 (extreme-2 inner grid pts)

Extreme case 3 times the work
as expected!

w/2

w/2

3200 (extreme but one)

Twice as much work as
expected




Observations: v
ghost cell co

Concurrency FPO in given region Factor predicted
from CrayPat

6400 51512160000 L(reference case)

3200 34341360000 2/3 2/3
1600 25755960000 /> %

800 51463260000 1-25/3 1.25/3

Predicted values match exactly with computed flops, in terms of ratios
Hypothesis seems to be correct
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Kernels: Calc scales,
ghost cells

NERSC

* Breakup by time spent

Concurrency  wall Comm Solver
4096 364 = 12 Does not scale
8192 201 11
16384 124 18 16
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BOUT++ results: improve INV,
PVODE

*  Summary
— Scaling degrades beyond 8192 procs
— Scaling efficiency is very poor at 32768 procs

— lIssues

* Extra computations in ghost cells
» Putin place to reduce communication
» Need to check if extra computations performed are worth it
» Performance degrades because
* Laplacian inversion does not scale
* Pvode solver does not scale
* MPI collectives

* Surface to volume ratio tested may not be best but issues remain

— MPI: Collectives grow with concurrency, but Laplacian inversion and PVODE
solver seem to be culpable in equal measure

* Recommendations: need to check if replacing ghost cell computation with
communication improves runtime (or not)

* Need to improve Laplacian inversion and PVODE kernels

~
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Investigation of collectives in time-
stepping algorithms (PETSc)

* Time-stepping algorithms suspected to have
collectives

— First step: check growth of collectives in time-
steppers

— Hook with PETSc and turn on profiling layer

— -log_summary

— Examine %collectives vis a vis runtime



PETSC

OT{rgie in Collectives in Implicit Timestepping with Newton-Krylov
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Overall conclusions and future
directions(?)

BOUT++ scales remarkably well for a strong scaling test
— Performance degradation ‘not just’ because of increase in surface to volume
ratio
Communication increases at higher concurrency, could constitute the
ultimate scaling bottleneck

Extra ghost cell computations

— Putin there for a reason, to lessen communication, but manifests as extra time
spent in computation

— Might be good overhead when flops become cheaper
Bandwidth sensitivity not an issue in BOUT++
Two dimensional domain decomposition
— Possibly add OpenMP in third direction?
Collectives might play dominant role in time-steppers
— Find ways of minimizing this
— What is the effect of putting in preconditioners?
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